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Abstract: The technology of microbial conversion provides a potential way to exploit compounds
of biotechnological potential. The red pigment prodigiosin (PG) and other PG-like pigments from
bacteria, majorly from Serratia marcescens, have been reported as bioactive secondary metabolites
that can be used in the broad fields of agriculture, fine chemicals, and pharmacy. Increasing PG
productivity by investigating the culture conditions especially the inexpensive carbon and nitrogen
(C/N) sources has become an important factor for large-scale production. Investigations into the
bioactivities and applications of PG and its related compounds have also been given increased
attention. To save production cost, chitin and protein-containing fishery byproducts have recently
been investigated as the sole C/N source for the production of PG and chitinolytic/proteolytic enzymes.
This strategy provides an environmentally-friendly selection using inexpensive C/N sources to
produce a high yield of PG together with chitinolytic and proteolytic enzymes by S. marcescens.
The review article will provide effective references for production, bioactivity, and application of
S. marcescens PG in various fields such as biocontrol agents and potential pharmaceutical drugs.
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1. Introduction

Chitin and its derivatives have numerous applications in the fields of environment protection, fine
chemistry, and pharmacy [1–11]. Fishery processing byproducts, such as shrimp and crab shells, shrimp
heads, and squid pens, are the main sources of chitin and chitosan which are conventionally prepared
via chemical pretreatments of acid demineralization and hot-alkali deproteinization [1,5,9,11–16].
Chitin, chitosan, colloidal chitin, and water soluble chitosan have commonly been used as the
major carbon/nitrogen (C/N) sources for the isolation of strains producing chitinolytic enzymes
and the production of chitinolytic enzymes by these isolated strains [9,15–18]. To cut down
fermentation expenses, the inexpensive materials of shrimp heads, shrimp shells, crab shells, and
squid pens have recently been evaluated as the sole C/N sources for the production of bioactive
compounds [5,6,9,12–16,19–74]. The recovery of chitin-containing fishery byproducts as the C/N source
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not only solves the environmental protection problem but also decreases the production costs of chitin
and its derivatives.

Pigments of microbial origin have received much more attention in recent studies due to their
versatile applications in agriculture, food, cosmetics, textile, and pharmacy. The antimicrobial, anti-cancer,
and anti-parasite bioactivities confer the bacterial pigments with the potential to be developed as
pharmaceutical products [75–78]. The worldwide concern recently has been to extend inclination towards
the use of natural materials in place of artificial ones because of several advantages including concerns over
environmentally-friendly sustenance [77,79]. Consequently, the uses of bacterial pigments have expanded
much more than synthetic pigments [80]. Prodiginines (PGs), a family of red microbial pigments,
have received much attention because of their considerable bioactivities [59–61,79–150], including
antimicrobial [79–97], antiparasitic [102–109], insecticidal [60,61,110–113], anti-cancer [59,97,114–147],
anti-oxidant [145,146], anti-inflammatory [145,146], immunosuppressant [147], and algicidal [99,148–150]
activities. The potential applications of PGs as natural dyes have also been infrequently investigated for
their use in textiles [101,151–154], candles [155], and cosmetics [96].

PGs include prodigiosin (PG, 2-methyl-3-pentyl-6-methoxyprodiginine), undecylprodigiosin,
metacycloprodigiosin, streptorubin B, and cycloprodigiosin [156–159] (Figure 1). Among PGs, PG is the
first member which appears dark red and can be easily dissolved in organic solvents such as ethanol,
methanol, and acetone [160–162]. The name of PG derived from Kraft in 1902. PG was first isolated in
the 1920s, its structural features were identified in the 1930s, and structure elucidation was completed in
the 1960s [163–166]. Serratia marcescens is the major source of PG production [59–62,81–214]. PGs are also
produced by some other bacterial strains including Serratia rubidaea [154,177], Alteromonas rubra [178],
Janthinobacterium lividum BR01 [179], Rugamonas rubra [180], Streptomyces longisporus ruber 100-19 [181],
Streptomyces coelicolor [182], Streptomyces spectabilis BCC 4785 [105], Streptomyces fusant NRCF69 [91],
Streptomyces sp. [106], Vibrio sp. C1-TDSG02-1 [116,118], Vibrio sp. KSJ45 [101], V. gazogenes [183],
V. psychroerythrus [184], Pseudomonas magnesiorubra [185], P. putida KT2440 [188,189], Streptoverticillium
sp. 26-1 [191], Streptoverticillium rubrireticuli [181], Pseudoalteromonas sp. [186], Pseudoalteromonas
rubra [100], Actinomycetes [146,187], and a gene recombinant strain of Pseudomonas putida [185,189].
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Figure 1. Structures of prodigiosin, undecylprodigiosin, metacyloprodigiosin, streptorubin B, and cycloprodigiosin.

Some PG-related reviews reported the production of PG from S. marcescens using commercial media
such as nutrient broth, peptone glycerol broth, and seed oils as the C/N sources [156,161,162,166,168,171].
The biological potentials of PG especially in the field of anticancer have also been reviewed [156–162,
166,168,169,171]. For example, a review of the characteristics and potential therapeutic anticancer-drug
applications of PG from Serratia was introduced by Darshan and Manonmani [180], while the
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structure, chemical synthesis, and biosynthesis of PGs as natural products were summarized by
Hu et al. [157]. Additionally, synergistic inhibitory effects of chitinolytic enzymes [36,37,39,86–90],
proteolytic enzymes [36,61,89,192–195], and S. marcescens PG were estimated for biocontrol in plant
cultivation [85–90]. Biosurfactant produced by S. marcescens was also evaluated [167,196–198].
Recently, chitin and protein-containing marine byproducts have been utilized as the sole C/N source
by S. marcescens TKU011 for the simultaneous production of PG [59–62], chitinolytic enzymes,
and proteolytic enzymes [36,37]. The present review discusses the foremost accomplishments in the
production and isolation of S. marcescens PG, particularly the application of shrimp heads, shrimp
and crab shells, and squid pens as C/N sources for PG production by S. marcescens TKU011 [59–62].
Additionally, the uses of S. marcescens PG in several fields, especially as biocontrol agents, are also
comprehensively reviewed.

2. Production of PGs

PG produced by S. marcescens has been considered as a promising aim for drug development
due to the described antifungal, immunosuppressive, and antiproliferative bioactivities. Hence, the
culture conditions for large-scale production to ameliorate PG productivity becomes an essential
issue [75–78,147]. To gain higher PG productivity, important factors for evaluation include the media
composition, inorganic phosphate availability, temperature, and pH [199,200]. In the case of C/N
source, the most commonly used media for PG production were commercial media, such as nutrient
broth and peptone glycerol broth. For example, Giri et al. found that the PG productivity by S.
marcescens was 520 mg/L and 569 mg/L in nutrient broth (28 ◦C) and peptone glycerol broth (30 ◦C),
respectively [201]. Furthermore, the supplement of fatty acid-containing plant oils was found to show
a positive effect on PG productivity which increased to 16,680 mg/L in sesame seed broth (28 ◦C) [201].
Kamble and Hiwarale reported that S. marcescens showed better PG productivity in nutrient broth than
in peptone glycerol broth [173]. Regarding the use of agricultural byproducts as C/N sources, ethanol
and cassava wastewater were used for PG production by S. marcescens 389 [190], and S. marcescens
UCP1549 [174], respectively. Further, chitin and protein-containing fishery byproducts have been
utilized for PG production by S. marcescens TKU011 [59–62].

For the production of exopolysaccharides (EPS), Paenibacillus polymyxa EJS-3 has been reported
to produce the highest EPS productivity (35.26 g/L) by using sucrose (188.2 g/L) and yeast extract
(25.8 g/L) as the C/N source [56]. Recently, squid pens were utilized successfully to produce the
highest yield of EPS from Paenibacillus sp. TKU023 (41.25 g/L) and P. macerans TKU029 (35.75 g/L) [56].
This inspired us to isolate the PG-producing strain, S. marcescens TKU011 using squid pens as the C/N
source. The PG productivity of using chitin and casein, squid pens, shrimp shells, and shrimp heads as
the sole C/N source by S. marcescens TKU011 was 4620 mg/L [59], 2480 mg/L, 190 mg/mL, and 30 mg/L,
respectively [61].

Table 1 summarizes the comparison of the reported PG yield of S. marcescens by using different
C/N sources. Chen et al. reported that a C/N ratio of 6/4 of starch/peptone (1.6% starch; 1.067% peptone)
achieved a high PG yield (6700 mg/L) by S. marcescens C3. PG yield of 7070 mg/L was achieved
after optimizing the concentrations of FeSO4·4H2O (0.56 mM) and MnSO4·4H2O (3.25 mM) [172].
Kamble and Hiwarale [173] studied S. marcescens PG production in peptone glycerol broth and nutrient
broth and observed that the highest PG productivity was 1335 mg/L and 1845 mg/L, respectively
after three days of cultivation [173]. Different from most other studies, the enhancing effects of
oil supplements on PG production were not observed in this study [173]. The comparison of PG
productivity by S. marcescens SR1 in nutrient broth and glycerol-yeast extract media was evaluated by
Parani and Saha [81]. The results showed that a higher PG productivity (765 mg/L) may be achieved
by supplementation of 4% vegetable oil mixture (sunflower, coconut, and olive oil) [81]. Medium
containing ethanol (1.5%) and cottonseed meal (1.5%) omitted inorganic salts (phosphate and NaCl)
and afforded S. marcescens S389 to produce up to 3000 mg/L PG [190]. Medium supplemented with
powdered peanut, coconut, sesame, and castor seed was evaluated for PG production by S. marcescens
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PP1. The maximum yield of PG reached 1595 mg/L in powdered peanut-supplemented medium.
Additionally, PG production by supplementing maltose and glucose to sunflower seed media reached
1556 mg/L and 1525 mg/L, respectively [82]. Peptone (1%) and maltose (0.5%) were used as the C/N
source by S. marcescenss subsp. lawsoniana HDZK-BYSB107 for the production of PG (656 mg/L), which
showed antibacterial and antitumor activities [143].

Table 1. Comparison of prodigiosin (PG) yield by S. marcescens in different reports.

Culture Medium PG Cultivation Reference

(C/N Source) Productivity (mg/L) Temp/pH/Time

Chitin/casein 4620 30 ◦C 1 Day/25 ◦C 2 Day [59]
Squid pens 2480 [61]

Shrimp shells 190 [61]
Shrimp heads 30 [61]

Crab shells 110 [61]
Ram horn peptone/mannitol 277.74 48 h [170]

Peanut seed broth 47,000 - [91]
Peanut seed broth 3875 28 ◦C/-/36 h [201]
Peanut seed broth 1595 28 ◦C after 48 h [82]

Peanut oil 2890 [201]
Peanut powder/olive oil/beef extract 13,622 [212]

Sunflower seed broth/maltose 1556 [82]
Sunflower seed broth/glucose 1525 [82]

Sesame seed broth 16,680 28 ◦C/-/36 h [201]
Sesame oil 1006 [201]
Coconut oil 1420 [201]
Copra seed 1940 [201]

Casein-enriched broth/vegetable oil 765.1 30 ◦C/7/84 h [81]
Ethanol/cottonseed meal 3000 28 ◦C/6.8/72 h [190]

Casein 4280 [206]
Cassava wastewater/mannitol 49,500 28 ◦C/7/48 h [174]

Yeast extract 690 [176]
Yeast extract 380.2 [212]

Yeast/tryptone 152 30 ◦C/72 h [172]
Nutrient broth/glycerol 25 ◦C/72 h [169]

Tryptone 353 [212]
Soya peptone 1174 [212]

Peptone/maltose 656 28 ◦C/72 h [143]
Sweet potato powder/casein 4800 [171]

Soybean powder 0 [212]
Corn steep liquor 0 [212]

Modified Luria–Bertani
broth/sunflower oil 790 [175]

3-[N-morpholino]-Ethanesulfonic acid 475 [199]

Cassava wastewater supplemented with 2% mannitol was used by S. marcescens UCP1549 to
produce PG (49,500 mg/L) [174]. To avoid using individual fatty acid as a substrate for reducing the
cost of industrial production, Giri et al. investigated the effect of different fatty acid-containing media
for PG production and found that the higher yield was obtained in peanut seed medium (38,750 mg/L)
and sesame seed broth (16,680 mg/L) [201]. Crude glycerol (a waste from biodiesel industry) was
supplemented with peptone as a C/N source for PG production by S. marcescens MN5 [202]. Ram horn
peptone (0.4%) supplemented in mannitol medium showed enhanced PG production (277.74 mg/L) by
S. marcescens MO-1 [170]. To decrease the medium cost by using tannery fleshing (TF) as a C/N source,
the proteinaceous byproducts of leather industries, Arivizhivendhan et al. studied the PG production in
TF (30%, w/w) and wheat bran (70%, w/w)-containing solid media. The highest PG productivity reached
was 70,402 mg per kg of TF [93]. The use of rice bran as a C/N source for S. marcescens PG production
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was reported by Arivizhivendhan et al., who showed that the PG produced showed antioxidant and
antimicrobial activities against foodborne pathogens [92]. Natural substrates such as sweet potato,
sesame, and mahua flower extract at different concentrations have also been used for PG production
by S. marcescens [171]. The highest PG yield was 4800 mg/L at the final optimized composition of
sweet potato powder/casein-containing medium. The purified PG showed antimicrobial [171] and
nematicidal [111] activities.

Janthinobacterium lividum BR01 is a psychrotrophic strain that produces PG and heptyl prodigiosin
when grown at cool temperatures. The gene cluster of the PG pathway was cloned from J. lividium BR01
and expressed in Escherichia coli, which showed differences in the responsible gene cluster of Serratia
sp. [179]. Domröse et al. integrated the PG biosynthesis gene cluster of S. marcescens in Pseudomonas
putida KT2440 to construct constitutive PG production strains [188]. The PG productivity obtained
was 94 mg/L using the Terrific Broth medium [189]. The PGs productivity of Streptomyces fusant
NRCF69, when peanut seed broth, sunflower oil broth, or dairy processing wastewater broth alone
or supplemented with 0.5% mannitol were used as the C/N source, was 42,030 mg/L, 40,110 mg/L,
36,700 mg/L, and 47,000 mg/L, respectively [91].

The correlation between extracellular proteases synthesis and PG synthesis in S. marcescens VI
was investigated and showed that chloramphenicol (an inhibitor of protein synthesis) inhibits the
synthesis of both extracellular proteases and PG [182–194]. Similar results were also observed when
using a mixture of 18 natural amino acids; asparagine and ammonium ions repressed the synthesis
of both PG and protease [182–194]. On the contrary, leucine exhibited inducing effects on both the
synthesis of exocellular protease and PG by S. marcescens VI [182–194]. The biosynthetic pathway
for Serratia sp. producing PG involves separate pathways using different metabolites which then
couple in the final condensation step [203]. The 5-methyl-4-pentyl-3,4-dihydro-2H-pyrrole and a
transaminase have been shown as the intermediates involved in the PG biosynthesis by Serratia sp.
ATCC 39006 [204] and involved in the biosynthesis of 2-methyl-3-n-amyl-pyrrole (MAP) from Serratia
sp. FS14 [205], respectively.

Based on the hydrophobic properties of PG, efficient extraction procedures for PG purification from
the culture supernatant of P. putida [188], Serratia sp. KH-95 [206], and S. marcescens SMDR [207] have
been studied by adsorption to the materials with hydrophobic surfaces of polyurethane [188], internal
adsorbent using acidified methanol and phase separation [206], and macroporous polymeric adsorption
resin of Diaion HP-20 resins [207]. The transmembrane transport of PG producing S. marcescens ATCC
8100 and the permeability barrier of the cell membrane were studied by using a model membrane
platform with a planar lipid bilayer [151]. The results showed that the mass transfer of the intracellular
PG was affected by its size and surface electrical properties and therefore could be modulated by
physical and chemical methods [151]. The immobilization strategy to increase PG production was
investigated by Chen et al. [172]. The PG productivity of S. marcescens C3 enhanced seven-fold to
15,600 mg/L by using immobilized cells in calcium alginate beads. For increasing the recovery yield
of PG, adsorption chromatography was studied to separate and purify PG directly. Wang et al. [208]
reported that the use of 0.1% Tween 80 (a nonionic surfactant) may improve the release of PG from the
cell envelope. The recovery of PG from the culture broth increased from 50% (using the conventional
method) to 83% (with a high loading capacity of the adsorbent X-5 resin) [208]. To investigate the
extraction methods which may purify PG with high yield and cost-effectivity, Khanam and Chandra
tried six different extraction methods including homogenization, ultrasonication, freezing and thawing,
heat treatment, organic solvents, and inorganic acids to evaluate the PG yield. The results showed that
the highest amount of extraction was achieved by ultrasonication (98.1%) and the lowest by freezing
and thawing (31.8%) methods [209].

The use of bioadsorbents for adsorption of PG was compared among Lactobacillus paracasei subsp.
paracasei TKU012 cells, cicada casting, and four chitin-containing materials including squid pens,
shrimp shells, α-chitin, and β-chitin [62]. The best result was observed in L. paracasei subsp. paracasei
TKU012, followed by cicada casting, shrimp shells, squid pens, β-chitin, and α-chitin. The cells of
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lactic acid bacterium (strain TKU012) and cicada casting may have the potential to recover and purify
PG from the PG-containing culture broth of S. marcescens TKU011 [62]. To increase S. marcescens
TKU011 PG production in the medium containing squid pens, the effects of phosphate and ferrous
ion supplementation, autoclave treatment, and aeration were studied [60]. The results showed that
the 40-min autoclaved medium enhanced PG productivity 2.5-fold to 2480 mg/L [60]. Nguyen et al.
further investigated PG production by S. marcescens TKU011 using 1% α-chitin and 0.6% casein as the
C/N source and obtained the highest yield of 4620 mg/L. α-Chitin and CaSO4 were found to play an
important role in enhancing PG production by S. marcescens [59].

Generally, peanut seed broth received remarkable PG productivity (47,000 mg/L) which was
approximately 10-fold greater than those using chitin-containing fishery byproducts fermented by
S. marcescens TKU011. Considering the utilization of obtaining culture broth for biological control,
chitin and protein-containing byproducts (1–3 USD/kg) as the C/N source provide PG, and chitinolytic
and proteolytic enzymes might also be expected to have potential applications.

3. Bioactivity and Application of PG

3.1. Antimicrobial Activity

The antifungal activity of PG produced from S. marcescens is investigated usually against fungal
pathogens. The PG from S. marcescens SR1 showed the maximum inhibitory activity against the
fungal pathogens Helminthosporium sativum, Fusarium oxysporium, and Rhizoctonia solani, in decreasing
order [81]. Picha et al. reported that the chitin-supplemented agar medium used for the growth and
production of PG by S. marcescens PP1 showed high inhibition to the tested fungal pathogens including
Alternaria alternata, Aspergillus niger, and F. oxysporum. The tested fungal species of A. niger, Mucor sp.,
and Rhizopus sp. were resistant to the produced pigment with no clear zone of inhibition [82]. PG has
been reported to display antagonistic effects on the tested fungal strains by increasing permeability in
the fungal membrane. Among the tested fungi on potato dextrose agar (PDA) plates, F. oxysporum
was highly inhibited by the PG treatment. PG enables S. marcescens D1 (an endofungal bacterium) to
invade fungal hyphae and spread over the culture of F. oxysporum to result in mycelial death. [213].

In a 0.2% colloidal chitin supplemented Luria broth, S. marcescens B2 produced PG and four
extracellular chitinolytic enzymes which showed antifungal activities against the phytopathogens
R. solani (caused cyclamen damping-off and rice sheath blight), F. oxysporum (caused fusarium wilt),
and Botrytis cinerea (caused gray mold) [85–87]. These four chitinolytic enzymes were detected
among the extracellular proteins of S. marcescens B2. Among the four chitinolytic enzymes produced
by S. marcescens B2, two enzymes showed an inhibitory effect against the spore germination of
B. cinerea. The PG extracted and purified from the bacterial cells of S. marcescens B2 also showed
inhibition against the spore germination of B. cinerea. A synergistic effect of the S. marcescens B2
produced PG and chitinolytic enzymes was also observed against the tested fungal pathogens [85–87].
Gutiérrez-Román et al. [88] also reported that the combination of S. marcescens CFFSUR-B2 produced PG
and chitinolytic enzymes showed synergistic inhibitory effect on the germination and germ tube growth
of Mycosphaerella fijiensis ascospores. Based on the results of toxic effects similar to that of benzimidazole
on ascospore germination, the authors suggested that the combination of PG and chitinolytic enzymes
may have potential use in the biocontrol of black Sigatoka disease caused by Mycosphaerella fijiensis [88].
S. marcescens ETR17 produced PG, several hydrolytic enzymes (chitinase, protease, cellulase, and lipase),
and plant growth-enhancing compounds (iodoacetic acid and siderophore). This strain was isolated as a
biocontrol bacterium which showed a remarkable level of inhibitory activities against several foliar and
root pathogens of tea [89]. Due to no hemolysin production, the authors concluded that S. marcescens
ETR17 can be applied to minimize the use of chemical fungicides for disease control in tea gardens [89].
Woodhams et al. [95] reported that S. marcescens PG caused remarkable growth inhibition of chytrid
fungi Batrachochytrium dendrobatidis and B. salamandrivorans at minimal inhibitory concentrations of 10
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and 50 µM, respectively [95]. Streptomyces fusant NRCF69 PGs have also exhibited antimycotic activity
against clinical dermatophyte isolates (Trichophyton, Microsporum, and Epidermophyton) [91].

The PG produced by S. marcescens PP1 showed higher inhibitory activity against Gram-positive
bacteria (Staphylococcus aureus and Bacillus subtilis) than Gram-negative bacteria (E. coli, Pseudomonas
aeruginosa, and Klebsiella pneumoniae) [82]. Arivizhivendhan et al. reported the inhibitory activity
of S. marcescens produced against P. aeruginosa [93]. Similar results of antibacterial activities by
S. marcescens 2170 PG have also been reported by Herráez et al. [94]. PG produced by S. marcescens
UFPEDA 398 showed inhibitory activity against 20 strains of oxacillin-resistant S. aureus. The minimum
inhibitory concentrations and minimum bactericidal concentrations ranged from 1–4 µg/mL and 2–16
µg/mL, respectively [83].

Arivizhivendhan et al. also reported that the PG from S. marcescens showed effective antioxidant
and antibacterial activities [92]. The extracts of aloe leaf and cucumber fruit are known to have
photoprotective activity. The application of PG as antibacterial and antioxidant additives to the
extracts of aloe leaf and cucumber fruit has been evaluated for the potential of developing commercial
sunscreens for human skin protection [96]. Nakashima et al. reported that a bacterial strain (MS-02-063)
that produces large amounts of PGs showed equivalent antibacterial activity to those of tetracycline
against some pathogenic Gram-positive bacteria including S. aureus [99]. Pseudoalteromonas rubra
synthesizes PG, cycloprodigiosin, and four PG derivatives that differ in the length of the alkyl chain.
The antimicrobial activities of the produced PG, cycloprodigiosin, and 2-methyl-3-hexyl-prodiginine
have been examined against E. coli, Staphylococcus aureus, Salmonella typhi, and Candida albicans and it
was found that cycloprodigiosin potently inhibited S. aureus at a concentration of 20 µg/mL [100].

The antimicrobial effect of PG against microorganisms including antibiotic-resistant pathogens
and phytofungal pathogens may provide a potential platform for their use as microbial disinfectants in
the fields of pharmaceutical and agricultural biocontrol, respectively.

3.2. Antiparasitic Activity

The isolation of antiparasitic compounds from microbial extracts has been widely investigated.
The antiparasitic activities of S. marcescens produced PG have been evaluated against Plasmodium
falciparum and Trypanosoma brucei gambiense. Combinations of PG with phytosynthesized silver and
gold nanoparticles showed a remarkable decrease in the IC50 values on both parasites (2.7- to 3.6-fold)
without an increase in cytotoxicity to the mammalian cells [102]. The antagonist effect of S. marcescens
2170 produced PG has been tested against parasite Trypanosoma cruzi cells. The results showed
that the concentration of PG required to suppress T. cruzi growth was significantly lower than that
required for benznidazole (0.25 mg/L and 4.9 mg/L, respectively) [94]. Isaka et al. reported three
compounds (metacycloprodigiosin, bafilomycin A1, and spectinabilin) extracted from Streptomyces
spectabilis BCC 4785 possessed potent antimalarial activity against P. falciparum K1. Among them,
metacycloprodigiosin exhibited potent inhibitory activity (IC50 of 0.0050 µg/mL) against P. falciparum
K1 with much lower cytotoxicity [105]. Marchal et al. observed that the presence of a nitrogen atom
in the A-ring of PGs is needed for antimalarial activity [107]. Later, the antimalarial activities of
four natural and three synthetic PGs were estimated against P. falciparum [108]. From a culture of
α-proteobacteria, Lazaro et al. purified heptyl prodigiosin which showed antimalarial activity similar
to that of quinine against the chloroquine-sensitive strain P. falciparum 3D7 [109].

The lack of useful nematicides and the serious damage caused by plant-parasitic nematodes have
led to an urgent requirement to isolate some natural remedy for their control [102]. The antinematicidal
activity of S. marcescens produced PG has been studied against juvenile stages of Radopholus similis
and Meloidogyne javanica. The results showed better activity of this PG (LC50 values, 83 and 79 µg/mL,
respectively) than those of the positive control of copper sulfate (LC50 values, 380 and 280 µg/mL,
respectively). The PG also showed antagonist effect on nematode egg-hatching ability [102].
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3.3. Insecticidal Activity

Bioagents produced from microbes offer alternatives to chemical pesticides as they can be more
selective and safer than chemical insecticides. The insecticidal potency of S. marcescens TKU011 PG
was investigated and compared with those of food colorants Tartrazine (Y4) and Allura Red AC (R40)
against Drosophila larvae [60,61]. The LC50 of PG (0.23 µg/µL), Y4 (0.449 µg/µL), and R40 (30 µg/µL)
using a five-day exposure period showed potential toxicity of the biopigment PG and the food colorant
Y4 against Drosophila larvae [60]. The order of survival rates of Drosophila larvae after five-day feeding
with 30 µL of cell broth, broken cell, cell pellet, or cell-free culture supernatant of S. marcescens TKU011
were 0%, 6.25%, 12.5%, and 37.5%, respectively, indicating a direct relationship with their PG content.
The fractions with a high PG concentration also exhibited a high insecticidal activity [61].

Patil et al. reported the mosquito larvicidal potential of the crude PG extracted from S. marcescens
NMCC46 culture broth against Aedes aegypti and Anopheles stephensi. The LC50 values of second, third,
and fourth instars of A. aegypti were 41.65, 139.51, and 103.95 and those of A. stephensi were 51.12,
105.52, and 133.07 [110]. Pure PG may be an important molecule for the control of Aedes aegypti and
Anopheles stephensi mosquitoes at their larval and pupal stages [111]. Suryawanshi et al. [111] analyzed
the effect of the pure PG isolated from S. marcescens NMCC 75 against larval and pupal stages of
Aedes aegypti and Anopheles stephensi mosquitoes. The pure PG showed mosquito larvicidal activities
with LC50 values of 14, 15.6, 18, and 21µg/mL against the early second, third, fourth instars, and
pupal stages of Aedes aegypti, respectively, and with LC50 values of 19.7, 24.7, 26.6, and 32.2µg/mL,
respectively, against the early second, third, and fourth instars and pupae of Anopheles stephensi,
respectively. The results of variation of enzymes (esterases, acetylcholine esterases, phosphatases,
and proteases) and total proteins in the fourth instar larvae of Aedes aegypti indicated the intrinsic
difference in biochemical features as a result of PG treatment [111]. Zhou et al. observed PG produced
by S. marcescens SCQ1 (an entomopathogenic strain isolated from silkworm) causes acute septicemia in
silkworms [112]. Asano et al. investigated the synergistic effects of PG, chitinases, and chitin-binding
protein from S. marcescens ATCC274 on the insecticidal activity of δ-endotoxin (Cry 1C of Bacillus
thuringiensis) against the common cutworm, Spodoptera litura [113]. The results showed that only
PG exhibited a remarkable synergistic inhibitory activity with Cry 1C which was lethal and growth
inhibitory. The supernatants from S. marcescens containing PG and partially purified PG exhibited a
similar synergistic activity on the insecticidal activity of Cry1C [113].

3.4. Anti-Cancer Activity

Several studies have demonstrated the anti-cancer activity of PG in various types of cancer.
Zhou et al. reported the PG produced by S. marcescens SCQ1 (an entomopathogenic strain) showed
potent anticancer activity on human lung adenocarcinoma A549 cells and concluded that S. marcescens
SCQ1 may have potential to be used as an anti-cancer compound [112]. To study the role of
mitochondria in PG-induced apoptosis, Llagostera et al. evaluated the apoptotic action of PG in GLC4
small cell lung cancer cell line by Hoechst 33342 staining and found that PG induces apoptosis in
both caspase-dependent and caspase-independent pathways [119]. The high cytotoxic sensitivity
of the human small cell lung doxorubicin-resistant carcinoma (GLC4/ADR) cell line to PG through
apoptosis activation was further studied and concluded that the results support PG as a potential drug
for the treatment of lung cancer because of its ability to overcome the multidrug resistance phenotype
produced by MRP-1 overexpression [120]. The synergistic effects between PG (produced by Vibrio
sp. C1-TDSG02-1) and doxorubicin (a chemotherapy drug) against oral squamous cell carcinoma
(OSCC) cells was reported by Lin and Wen [118]. Based on the results of PG-priming, autophagy could
sensitize OSCC cells by promoting doxorubicin influx without regulation of doxorubicin transporter.
Lin and Wen also concluded that the PG (produced by Vibrio sp. C1-TDSG02-1)-priming might be a
promising adjuvant approach for the chemotherapy of OSCC [118]. Chiu et al. reported the attenuation
of tumors accumulated in the mice trachea by PG (produced by Vibrio sp. C1-TDSG02-1) treatment
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and concluded the potential of PG as a potential chemotherapeutic agent for lung cancer regimens
regardless of doxorubicin resistance [116].

Montaner and Perez-Tomas evaluated the apoptotic action of PG in colon cancer cells (DLD-1
and SW-620 human colon adenocarcinoma cells, NRK, and Swiss-3T3 nonmalignant cells) and found
that metastatic SW-620 cells were more sensitive to PG than DLD-1. According to the results in both
cancer cell lines, the authors suggested that PG induces apoptosis in colon cancer cells [130]. The effect
of PG on proliferation and expression of apoptotic-related genes in HT-29 cells was evaluated by
Hassankhani et al., who also suggested that PG-induced apoptosis may ascribe to the inhibition of
Bcl-2 and survivin in HT-29 cells and these genes may be promising molecular targets of PG [128].
Dalili et al. [129] evaluated the antiproliferative activities of S. marcescens PTCC 1111 produced PG in
HT-29 and T47D cancer cell lines. The results showed that HT-29 cells were more sensitive than T47D
cells to PG [129]. PG showed higher apoptotic effect than doxorubicin in HT-29 cells. The authors,
therefore, suggested the use of PG as a promising antineoplastic agent that triggers apoptosis in
different cancer cell lines [129]. Kavitha et al. indicated strong anti-cancer and apoptotic activity of S.
marcescens PG against human cervical carcinoma cancer, according to the results of dose-dependent
inhibition of human cervical carcinoma cell (Hela-229 cell line) proliferation [137]. Díaz-Ruiz et al.
found that treatment of human gastric carcinoma cells (HGT-1 cell line) with PG showed a constant
decrease in viability due to apoptosis and suggested that PG induces apoptosis in HGT-1 cells [133].

Soto-Cerrato et al. observed potently cytotoxic activity of PG in both estrogen receptor-positive
(MCF-7) and negative (MDA-MB-231) breast cancer cell lines and suggested PG as an interesting and
potent new pro-apoptotic agent for the treatment of breast cancer despite the presence of multidrug
resistance transporter molecules [122,123]. Lu et al. reported that PG could downregulate RAD51
(an attractive target for anticancer drugs) in multiple human breast carcinoma cell lines irrespective of
p53 status [126].

To evaluate the immunosuppressive and apoptotic mechanisms of PG, Monge et al. examined
the variation of protein expression on exposure to apoptotic concentrations of PG in mitoxantrone
(MCF-7-MR) resistant MCF-7 cancer cell line and found that the identified proteins were involved
in various cellular functions, including cell defense, DNA repair, and cellular organization [121].
Sam and Pourpak reported that as molecular targets of PG, P53 and survivin contribute to
caspase-3-dependent apoptosis in acute lymphoblastic leukemia cells where PG represents an attractive
p53- and survivin-modulating agent [134]. Campàs et al. demonstrated that PG induces apoptosis of
B-cell chronic lymphocytic leukemia (B-CLL) cells through caspase activation [114]. Liu et al. evaluated
the undecylprodigiosin (UPG) extracted from the fermentation broth of Saccharopolyspora sp. (a sponge
Mycale plumose-derived actinomycete) and found a significant cytotoxic activity of UPG against
five cancer cell lines, especially on murine leukemia P388 [115]. Liu et al. further indicated that
UP inhibits proliferation of P388 by inducing G2/M phase arrest and apoptosis, which was related
to the activation of P38, JNK rather than ERK1/2 signaling [214]. Based on the observation that PG
significantly increased the rate of growth inhibition and decreased metabolic activity of HepG2 cells in
a dose- and time-dependent manner, Yenkejeh et al. suggested PG as an attractive compound that may
provide a novel approach to the hepatocellular carcinoma-targeted therapy [135].

Based on the results of dose-dependent inhibition of human cervix carcinoma cell (Hela-229 cell
line) proliferation by S. marcescens, Kavitha et al. suggested strong anticancer and apoptosis activity
of PG against human cervical carcinoma cancer [137]. Montaner et al. [142] studied the effects of
S. marcescens 2170 culture supernatant on the viability of different hematopoietic cancer cell lines (Jurkat,
NSO, HL-60, and Ramos) and nonmalignant cells (NIH-3T3 and MDCK) and found that the cytotoxic
effect was due to apoptosis [142]. The results of using mutants of S. marcescens (strains OF, WF, and 933)
that do not synthesize PG suggested the involvement of PG in this apoptosis [142,143]. Li et al. [143]
investigated the anticancer activities and mechanism of activity of S. marcescens HDZK-BYSB107 PG by
using human choriocarcinoma (JEG3) and prostate cancer cell lines (PC3) in vitro and JEG3 and PC3
tumor-bearing nude mice in vivo [143]. The bacterial PG was observed to induce apoptosis in JEG3
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cells, and PG significantly inhibited the growth of JEG3 and PC3 cells, in a dose and time-dependent
manner [143]. Nguyen et al. [59] found that the PG purified from fermentation of chitin-containing
medium by S. marcescens TKU011 showed potent anticancer activities against A549, Hep G2, MCF-7,
and WiDr with IC50 values of 0.06, 0.04, 0.04, and 0.2 µg/mL, respectively. For comparison, mitomycin
C, a commercial anti-cancer compound was also tested, and it showed weaker activity with IC50

values of 0.11, 0.1, 0.14, and 0.15 µg/mL, respectively [59]. Muthukumar et al. [145] studied the
antioxidant, anti-inflammatory, and cytotoxic properties of PG produced by S. marcescens VITAPI
and observed potent radical scavenging effect of the extracted PG at 86%, which was significant in
comparison to ascorbic acid as a standard [145]. The in vitro anti-inflammatory effect of PG in controlled
experimental conditions revealed its protection at 88% and inhibition in a concentration-dependent
manner. The cytotoxic bioassay of PG showed the IC50 value as 50 µg/mL at 63% cytotoxicity [145].
El-Bondkly et al. [91] reported the cytotoxic activities of PG pigments produced by Streptomyces fusant
NRCF69 against three human cancer cell lines, including colon cancer cell line (HCT-116), liver cancer
cell line (HEPG-2), and breast cancer cell line (MCF-7) [91]. The synthesis and evaluation of a series of
ten PGs that bear ester and amide substitution about the C-ring of the PG skeleton were reported by
Lund et al. [136]. The PG bearing C-ring esters and amides obtained by chemical synthesis displayed
anticancer activity, particularly when featuring a hexyl chain [136].

3.5. Algicidal Activity

Red tides (harmful algal blooms) are caused by some toxic phytoplankton, and lead to
massive economic losses and cause marine environmental disturbances. The PG producing strain
Hahella chejuensis KCTC 2396 (a marine bacterium) was evaluated by Kim et al. as an effective
and environment-friendly strategy to control red tide outbreaks [148]. The lytic activity of this
promising molecule against Cochlodinium polykrikoides cells at very low concentrations (1 ppb) was
serendipitously detected, making H. chejuensis a strong candidate among the biological agents to
control red tides [148]. Nakashima et al. [149] reported that the pigment, PG-L-1 produced by a marine
bacterium strain MS-02-063 (γ-proteobacterium) exhibited potent algicidal activity against various red
tide phytoplanktons in a concentration-dependent manner [99,149]. The authors suggested that PG-L-1
produced by strain MS-02-063 is controlled by the homoserine lactone quorum sensing. This bacterium
and other algicidal bacteria may be effective in regulating the blooms of harmful flagellate algae
through the quorum sensing system [149].

3.6. Dyes

The environmental pollution concerns raised because of the use of chemically synthetic pigment
have led to increasing interest in the natural ones. Microbial pigments have lately attracted increasing
attention in textile dyeing because of their sustainability and cleaner production [75–78,151,152,169,210].
Recently, PG has become a research hotspot for its bright colors and antibacterial function. To promote
the application of PG in textile dyeing, a novel idea of preparing dye liquid based on fermentation broth
was put forward via increasing the proportion of extracellular pigments [151]. With the improvement
in transmembrane transfer efficiency of S. marcescens ATCC8100, PG was produced as the proportion
of extracellular pigments, and the complicated biological separation process could be avoided and the
application of microbial pigments in textile dyeing can be promoted [151].

In the ethanol solution, PG has good stability under natural indoor light but gets rapidly
decomposed under intense sunlight [210]. PG is an eco-friendly colorant to dye fabrics, including
synthetic and natural fibers. Synthetic fabrics (such as polyamide and acrylic) dyed with PG have high
colorfastness to washing and exhibit antimicrobial activities against E. coli and Staphylococcus aureus.
Liu et al. [210] reported the promising prospects of S. marcescens jx1-1, with high PG yield and purity,
in food, cosmetic, and textile industries.

A strain of Vibrio sp. KSJ45 produced large quantities of bright red PGs with an elementary
composition of C20H25N3O that could be used to dye many fibers including wool, nylon, acrylics,
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and silk. Fabrics dyed with the PGs produced from Vibrio sp. KSJ45 demonstrated antibacterial
activity [101]. Vaidyanathan et al. [211] have studied the application of a novel red biochrome (514 Da
in size) produced by solid-state cultivation of Serratia sakuensis subsp. nov. strain KRED in the dyeing of
silk, wool, and cotton fabrics. The results showed that silk, wool, and cotton fabrics dyed with this new
natural red compound have high color strength and dye uptake values along with good colorfastness
as well as antibacterial activity [211]. Mehta and Shah [169] studied the application of PG in the candle
industry. The mixture of PG with translucent wax was homogenized and poured into the mold and
the candles were left to cool down. After de-molding, the translucent candle showed a more intense
coloration, which was similar to the colored candles available in the market, the authors proposed
that the synthetic coloring agents can be replaced by natural colorants extracted from microorganisms.
The results of the present study on the isolation and application of PG extracted from S. marcescens in
the coloration of translucent candles revealed that the pigment PG can be considered as a possible
alternate source of colorant in various industries. Table 2 summarizes the bioactivities and applications
of PGs reported.

Table 2. Bioactivities and applications of PGs.

Strain Bioactivity/Application Reference

(Antimicrobial activity)
S. marcescens UFPEDA398 antibacterial [83]
S. marcescens IBRL USM 84 antibacterial [84]

S. marcescens antibacterial [94]
S. marcescens antibacterial [92,93]
S. marcescens antibacterial [97]
S. marcescens anti-chytrid fungi [95]

S. marcescens PP1 anti-fungal pathogens, antibacterial [82]
S. marcescens CFFSUR-B2 anti-fungal pathogens [88]

S. marcescens ETR17 anti-fungal pathogens [89]
S. marcescens antibacterial [96]

S. marcescens SR1 anti-fungal pathogens [81]
S. marcescens B2 anti-fungal pathogens [85,86]

Streptomyces fusant NRCF69 antidermatophytic [91]
Strain MS-02-063 antibacterial [99]

Pseudoalteromonas rubra antibacterial [100]
Vibrio sp. KSJ45 antibacterial [101]

(Anti-parasitic activity)
S. marcescens 2170 anti-parasitic euglenoids [94]

S. marcescens anti-parasitic euglenoids [102]
S. marcescens anti-nematode [103]
S. marcescens anti-malaria [104]

Streptomyces spectabilis BCC 4785 anti-malaria [105]
Streptomyces sp. anti-malaria [106]

Prodigiosene anti-malaria [107]
Prodiginine anti-malaria [108]

Heptyl prodigiosin anti-malaria [109]

(Insecticidal activity)
S. marcescens TKU011 fruit fly larvicide [60,61]

S. marcescens NMCC46 mosquito larvicide [110]
S. marcescens NMCC75 mosquito larvicide [111]

S. marcescens SCQ1 acute septicemia of silkworm [112]
S. marcescens ATCC274 anti-cutworm [113]
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Table 2. Cont.

Strain Bioactivity/Application Reference

(Anti-cancer activity)
S. marcescens TKU011
S. marcescens TNU01

anti-cancer
anti-cancer

[59]
[87]

S. marcescens anti-cancer [138]
S. marcescens anti-cancer [147]

S. marcescens SCQ1 anti-lung cancer [112]
Vibrio sp. C1-TDSG02-1 anti-lung cancer [116]

S. marcescens anti-lung cancer [119,120]
S. marcescens anti-oral cancer [117]

Vibrio sp. C1-TDSG02-1 anti-oral cancer [118]
S. marcescens anti-breast cancer [97]
S. marcescens anti-breast cancer [121]
S. marcescens anti-breast cancer [124]
S. marcescens anti-breast cancer [125]
S. marcescens anti-breast cancer [126]
S. marcescens anti-breast cancer [127]
S. marcescens anti-breast cancer [122,123]
S. marcescens anti-colorectal cancer [128]
S. marcescens anti-colorectal cancer [129]
S. marcescens anti-colorectal cancer [130]
S. marcescens anti-colorectal cancer [131]
S. marcescens anti-colorectal cancer [132]
S. marcescens anti-gastric cancer [133]
S. marcescens anti-leukemia [114]
S. marcescens anti-leukemia [134]

Saccharopolyspora sp. anti-leukemia [214]
S. marcescens anti-hepatocellular cancer [135]
Prodigiosene anti-cancer [136]
Prodigiosin anti-cancer [141]
S. marcescens anti-cervix carcinoma [137]

S. marcescens MTCC97 anti-cervix carcinoma [140]
S. marcescens 2170 anti-hematopoietic cancer [142]

S. marcescens HDZK-BYSB107 anti-choriocarcinoma [143]
S. marcescens HDZK-BYSB107 anti-prostate cancer [143]
Streptomyces fusant NRCF69 anti-colon cancer [91]

S. fusant NRCF69 anti-liver cancer [91]
S. fusant NRCF69 anti-breast cancer [91]

(Anti-oxidation/Anti-inflammatory activity)
S. marcescens VITAPI anti-oxidation [145]
S. marcescens VITAPI anti-inflammatory [145]

S. marcescens immunosuppressive [147]

(Algicidal activity)
Hahella chejuensis KCTC 239 algicide [148]

strain MS-02-063 (γ-proteobacterium) algicide [149]

(Dyes)
S. marcescens ATCC8100 textile [151]

Serratia sp. KH-1 textile [152]
S. marcescens candle [163]
S. marcescens sunscreen [96]

Serratia rubidaea textile [154,177]
Vibrio sp. KSJ45 textile [101]

4. Conclusions and Perspectives

Pigments of various kinds and forms have been used as additives or supplements in the food
industry, cosmetics, pharmaceuticals, biocontrol, and other applications. Recently, in response to
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the problems of the synthetic pigments that cause toxicity and carcinogenicity in the human body,
the inclination to use natural pigments as adding natural materials for human health and safety has
gradually expanded. This review contains the most recent information on the production of PGs
from various bacteria especially S. marcescens. For PG production, the commercial media of peptone
and yeast extract supplemented with vegetable oil have been used for enhancing PG productivity.
Considering the bioactivities of PG, anti-cancer applications have been most widely studied. Compared
to the use of expensive media supplemented with vegetable oils, chitin and protein-containing fishery
byproducts have more potential for PG production.

The discovery of inexpensive PG not only solves environmental problems but also promotes the
economic value of marine wastes. Furthermore, the chitinolytic and proteolytic enzymes together with
PG produced by S. marcescens TKU011 using fishery byproducts can enhance antimicrobial activities
and may be a potential source of biological control agents.
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